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Abstract Plasmodiphora brassicae is a soil-borne obli-

gate parasite. The pathogen has three stages in its life

cycle: survival in soil, root hair infection, and cortical

infection. Resting spores of P. brassicae have a great

ability to survive in soil. These resting spores release pri-

mary zoospores. When a zoospore reaches the surface of a

root hair, it penetrates through the cell wall. This stage is

termed the root hair infection stage. Inside root hairs the

pathogen forms primary plasmodia. A number of nuclear

divisions occur synchronously in the plasmodia, followed

by cleavage into zoosporangia. Later, 4–16 secondary

zoospores are formed in each zoosporangium and released

into the soil. Secondary zoospores penetrate the cortical

tissues of the main roots, a process called cortical infection.

Inside invaded roots cells, the pathogen develops into

secondary plasmodia which are associated with cellular

hypertrophy, followed by gall formation in the tissues. The

plasmodia finally develop into a new generation of resting

spores, followed by their release back into soil as survival

structures. In vitro dual cultures of P. brassicae with hairy

root culture and suspension cultures have been developed

to provide a way to nondestructively observe the growth

of this pathogen within host cells. The development of

P. brassicae in the hairy roots was similar to that found in

intact plants. The observations of the cortical infection

stage suggest that swelling of P. brassicae-infected cells

and abnormal cell division of P. brassicae-infected and

adjacent cells will induce hypertrophy and that movement

of plasmodia by cytoplasmic streaming increases the

number of P. brassicae-infected cells during cell division.

Keywords Life cycle � Plasmodiophora brassicae �
Resting spore � Plasmodium � Zoosporangium �
Root hair infection � Clubroot � Dual culture in vitro

Life Cycle In Vivo

Plasmodiphora brassicae is a soil-borne obligate parasite.

The pathogen has three stages in its life cycle: survival in

soil, root hair infection, and cortical infection (Fig. 1)

(Ayers 1944; Ingram and Tommerup 1972; Naiki 1987).

Primary inoculum is composed of resting spores dispersed

from rotten host tissue into the surrounding soil. The

resting spore is about 3 lm in size and subspherical to

spherical (Figs. 1a, 2a) (Buczacki and Cadd 1976). The

surface of each resting spore is covered with spines

(Fig. 2b) (Williams and McNabola 1967; Ikegami and

others 1978). A primary zoospore is released from each

resting spore, spindle-shaped or pyriform, 2.8–5.9 lm

long, and biflagellate (Fig. 1b) (Ayers 1944). The flagellae

have two shapes: a shorter flagellum with a blunt end and a

longer flagellum with a whiplash or tail piece. When the

zoospore reaches the surface of a root hair, it penetrates the

cell wall. This stage is termed the root hair infection stage

or primary infection stage. In root hairs the pathogen forms

primary plasmodia (Fig. 1c). A number of nuclear divi-

sions occur synchronously in the plasmodia, followed by

cleaving into zoosporangia. The zoosporangia form clus-

ters in the root hair (Fig. 1d) and sometimes in epidermal

cells. Later, 4–16 secondary zoospores are formed in each
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zoosporangium. After releasing these zoospores, the empty

zoosporangia remain in the root hairs (Fig. 1e).

The secondary zoospores cannot be visually differenti-

ated from the primary zoospores. Binucleate zoospores are

sometimes found and interpreted as having formed by the

fusion of two distinct zoospores, not from division within

nuclei (Tommerup and Ingram 1971; Ingram and Tomm-

erup 1972). The secondary zoospores penetrate the cortical

tissues, a process called cortical infection or secondary

infection stage. Inside infected cells the pathogen develops

into secondary plasmodia which proliferate and are asso-

ciated with cellular hypertrophy (Fig. 1f, g), followed by

gall formation in root tissues. After a number of nuclear

divisions, the secondary plasmodia contain two nuclei in

the early stages of growth and then develop into multinu-

clear plasmodia (Garber and Aist 1979). In plasmodia with

haploid nuclei, the nuclei may fuse forming diploid nuclei.

Futhermore, meiotic cleavage may occur in the diploid

plasmodia, indicating that the plasmodia return to the

haploid state again (Buczacki 1983). This hypothesis is not

universally accepted. The plasmodia finally develop into

resting spores (Fig. 1h, i) (Ikegayami and others 1982),

followed by their release into soil as survival structures.

During these complex cleavages, the pathogen produces

resting spores and increases its genetic diversity.

Resting-Spore Germination

Resting spores of Plasmodiophora brassicae have a great

ability to survive in soil. Gibbs (1931) reported that resting

spores may survive without host plants for 5 years. Wal-

lenhammar (1996) found that the half-life of an inoculum

was 3–6 years in heavily infested fields and that the level

of infestation declined to below a detectable level after a

period of 17.3 years. The resting spores remained active

when held at 40�C for 24 h but were inactivated by treat-

ment at 30�C for 14 days (White and Buczacki 1979).

Fig. 1 Life cycle of

Plasmodiophora brassicae. a
Resting spore. b Primary

zoospore. c Primary

plasmodium in root hair. d
Zoosporangial cluster in root

hair. e Empty zoosporangium. f,
g Secondary plasmodia in

cortical cells. h, i Resting spores

in cortical cells

Fig. 2 Scanning electron micrographs of immature and mature

resting spores in clubroot of turnip. a Immature resting spores.

b Mature resting spores. Scale bar = 1 lm
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Resting-spore germination is the first step in the life

cycle. Knowledge of the environmental conditions that

affect germination is key to controlling clubroot disease

(see Dixon, this issue; Donald and Porter, this issue). The

release of calcium ions reputedly triggers the germination

of the resting spores (Yano and others 1991). These

authors found that a reabsorption of calcium ions was

necessary for successful germination. They used a com-

bination of inhibitors of calcium ion release and absorp-

tion in their study (personal communication of

unpublished data). Macfarlane (1970) found that the

resting spores from old rotten galls had higher germina-

bility than those extracted from young hard galls. The

work of Yano and others (1991) agreed with that of

Macfarlane (1970). Scanning electron microscopy (SEM)

demonstrated that the young spores were covered with

fibrous materials (Fig. 2a), whereas the mature spores

possessed a number of spines but the fibrous material was

not present (Fig. 2b). Mature spores germinated regardless

of the presence of calcium ions, whereas immature young

spores required the presence of calcium ions (Fig. 3). The

results suggest that populations of resting spores have

different levels of maturation and that their ability to

germinate is associated with the level of maturation of the

spores. The germination of mature resting spores is

affected by environmental factors such as pH, humidity,

temperature, and other inorganic ions and by biological

factors (Takahashi 1994a; Friberg and others 2005) (see

Dixon, this issue).

The zoospores released from resting spores survive for

relatively short periods of time (Suzuki and others 1992;

Takahashi 1994b), suggesting that induction of spontane-

ous germination would provide a valuable opportunity

to reduce the inoculum potential of this pathogen. Germi-

nation may be triggered by host root exudates as well as

those from nonhosts (Narita and Nishiyama 1955; Bochow

1965; Kroll and others 1983; Ikegami 1985; Suzuki and

others 1992; Friberg and others 2005). Root hair infection

has also been observed in nonhost plants such as Lolium

perenne, Reseda odorata, and Tropæolum majus but

apparently does not result in cortical infection (Macfarlane

1952). Therefore, use of decoy or trap plants could be a

valuable tactic for disease control. Murakami and others

(2000, 2001) demonstrated that leafy daikon (Raphanus

sativus), spinach, and oats when grown on infested land

reduced the pathogen population density and resulted in a

parallel decline in disease severity.

Root Hair Infection

Although the primary zoospores infect root hairs, zoospo-

rangial clusters with many zoospores are formed within the

root hairs. Furthermore, Naiki and others (1984a) found

that secondary zoospores released from zoosporangia in

root hairs reinfected them. These events suggest that the

pathogen may proliferate in a short cycle around root hairs

and epidermal cells and this enhances the infection of

cortical tissues during the root hair infection stage of the

life cycle.

As described above, root hair infection is observed in

nonhost plants as well as host plants. It is not clear whether

the secondary zoospores from nonhost plant roots will

infect the roots of Brassica hosts. Host specificity may be

less in the root hairs compared with the cortical cells.

Further study is necessary to understand the role of root

hair infection of nonhost plants.

The estimation of infestation levels in fields was based

on the relationship between population densities of the

pathogen and the frequencies of root hair infections

(Samuel and Garrett 1945). Naiki and others (1978)

reported, however, that no root hair infection was observed

when there were fewer than 103 resting spores/g soil.

Clubroot formation occurred above this concentration

(Fig. 4a). This level of sensitivity is not enough for prac-

tical diagnosis (see Faggian and Strelkov, this issue).

Calcium concentration may be related to root hair

infection as well as spore germination. Webster and Dixon

(1991) found that increasing calcium concentration around

roots reduced the development of zoosporangia in root

hairs and slowed the release of the secondary zoospores

from zoosporangia. These effects can be associated with

successful control of the disease by liming the soil (see

Donald and Porter, this issue). Liming could have two

effects: the addition of calcium ions and the increase of soil

alkalinity (Webster and Dixon 1991).

Fig. 3 Effect of maturation level of resting spores and calcium ion

concentration on the germination of resting spores. The resting spores

were collected from clubroots of turnips grown in soils infested with

104 and 107 spores/g soil for 6 and 8 weeks
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Cortical Infection

The cortical infection stage is induced by secondary zoo-

spores released from zoosporangia in root hairs. The pri-

mary zoospores will not infect cortex tissues (Dobson and

Gabrielson 1983). The infection processes resulting in

cortical infection are still not clear. Whether the zoospores

are released from the root hair into the soil or move inside

the root hair or both has yet to be clarified. Stages of

movement within the host were demonstrated in a dual

culture of the host and pathogen as described below.

The relationship between root hair infection and cortical

infection leading to gall formation is complex (Naiki and

others 1984b). The susceptibility of root hairs could not be

correlated with that of cortical cells and resultant gall

formation. For example, in Fig. 5, the cultivar represented

by the symbol (d) showed high levels of root hair infection

but no gall formation when exposed to the pathogen

physiologic race ECD20/15/12. In addition, the balance of

root hair infection and gall formation varied when different

pathogen races were used. The cultivar represented by (h)

showed moderate root hair infection and low gall formation

when exposed to the race ECD20/15/12, whereas the cul-

tivar showed low root hair infection and high gall forma-

tion when exposed to the race ECD20/31/31.

Using highly susceptible cultivars of Chinese cabbage,

the population density of resting spores was significantly

correlated with gall formation (Fig. 4b) (Naiki and others

1978). Based on the regression curve of this relationship,

the minimum population density for gall formation was

calculated as 3.5 resting spores/g soil. There are two

pathogenic strategies in each life cycle: root hair infection

forming zoosporangial clusters with many zoospores and

cortical infection forming a number of resting spores.

Therefore, even if the infestation level is low and does not

affect the yield of a susceptible crop, the population density

will increase substantially for the next cropping season.

Actually, there are several reports that single resting spores

induced gall formation (Tinggal and Webster 1981; Jones

and others 1982; Scott 1985; Kageyama and others 1995;

Narisawa and others 1996).

Life Cycle In Vitro Dual Culture

Although several investigations have used dual cultures of

P. brassicae with callus culture (Strandberg and others

1966; Ingram 1969; Tommerup and Ingram 1971;

Dekhuijzen 1975; Buczacki 1980; Ikegami 1992), there

remain difficulties in observing this pathogen within host

tissues. In vitro dual cultures of P. brassicae with hairy

root culture (Asano and others 1999, 2000) and suspension

cultures (Asano and Kageyama 2006) were developed to

provide a way to nondestructively observe the growth of

Fig. 4 Relationship of spore

density to root hair infection and

gall formation of Chinese

cabbage. a Root hair infection.

b Gall formation

Fig. 5 Relationship between

root hair infection and gall

formation in 16 cultivars of

crucifers using different

physiologic races of

Plasmodiophora brassicae,

ECD20/15/12 and ECD20/31/31
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this pathogen within host cells. New views of the life cycle

of P. brassicae were obtained from these cultural

techniques.

Germination of Surface-Disinfected Resting Spores

Satisfactory surface disinfection of resting spores is one of

the most important techniques needed when establishing a

dual culture of P. brassicae in hairy root cultures. Resting

spores of P. brassicae were surface-disinfected with 2%

(w/v) cloramine-T solution for 20 min and an antibiotic

solution (1 lg ml-1 of colistin sulfate, 1 lg ml-1 of van-

comycin hydrochloride, and 6 lg ml-1 of cefotaxime

sodium) for 1 day (Asano and others 1999).

The germination of surface-disinfected resting spores

started 2 days after incubation commenced, increased

steadily for 6 days, and then stopped. On the other hand,

the germination of nondisinfected resting spores was

delayed by 2 days and the percentage of successful ger-

mination was lower. At the end of the experiment, the

germination rate of surface-disinfected resting spores

(12.0%) was significantly higher than that of nondisin-

fected resting spores (6.7%). These results suggest that the

germination process is identical with one for intact resting

spores but other biological factors will affect the germi-

nability of resting spores.

Growth of P. brassicae in Root Hairs Using Hairy Root

Cultures

Previous studies reported that the age of root hairs might

affect infection by P. brassicae (Samuel and Garrett 1945;

Naiki and others 1978). Serial observation of root hair

infection by resting spores was difficult when using tradi-

tional methods of soil and hydroponic culture. By contrast,

dual culture of hairy roots and P. brassicae under axenic

conditions allowed successful serial observation of root

hair infection in a sample (Asano and others 2000) over a

period of time.

In dual culture, the number of infections was high in

5–6-day-old root hairs, indicating that the age of root hairs

influenced successful infection. Infection began about

3 days after inoculation, increased up to 6 days, and con-

tinued increasing more slowly until 10–12 days after

inoculation. The germination of resting spores and root hair

infections occurred synchronously with a delay of 2 days

between these events. This might be due to a time lag in

infection by primary zoospores following resting-spore

germination.

The growth of P. brassicae in a single root hair in turnip

hairy root culture was serially observed for 8 days after

inoculation. An amorphous primary plasmodium (Fig. 6a)

expanded to fill as much as one-quarter of the volume of

the root hair in 1 day (Fig. 6b). The protoplasm of the

plasmodium became tuberculate in shape, and each tuber-

cle subsequently became bounded with a membrane and

developed zoosporangia (Fig. 6c). The cytoplasm within

these zoosporangia cleaved and then differentiated into

mature zoosporangia containing secondary zoospores.

Secondary zoospores were released from zoosporangia

(Fig. 6d). In dual cultures of P. brassicae and turnip hairy

roots, swimming secondary zoospores were observed

6–8 days after inoculation. The process of secondary

infection could not be observed, however, in dual culture.

The development of P. brassicae in hairy roots was

apparently similar to that found in intact plants and

reported by previous workers (Katsura and others 1970;

Ingram and Tommerup 1972), despite the fact that hairy

roots without shoots may differ physiologically and bio-

chemically from those of intact plants.

Asano and others (1999) also established gall formation

in hairy root cultures. Therefore, dual culture appears to

have some advantages over traditional methods of using

soil or other substrates. The dual-culture method allows for

the investigation of P. brassicae under carefully defined

chemical and physical conditions such as temperature,

Fig. 6 Growth of

Plasmodiophora brassicae
within a single root hair of

turnip hairy root photographed

(a) 4, (b) 5, (c) 6, and (d) 8 days

after inoculation with resting

spores. a Amorphous primary

plasmodium. b Young

zoosporangia developed from

primary plasmodium. c Mature

zoosporangia containing

secondary zoospores. d Partly

evacuated zoosporangia. Arrows
indicate empty zoosporangium.

Scale bar = 50 lm
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humidity, pH, and nutrients without the effects of other

microorganisms being present. This method can be used to

study the effect of environmental and biological factors on

the infection and growth of P. brassicae (see Dixon, this

issue).

Growth of Secondary Plasmodia Using Suspension

Culture

Asano and Kageyama (2006) developed dual cultures of

P. brassicae and turnip using suspension cell cultures. The

suspension culture of P. brassicae-infected turnip cells was

derived from P. brassicae-infected callus in MS liquid

medium with 0.1 mg 2,4-D L-1 and 0.02 mg kinetin L-1.

Propagated suspension cells were spherical to cylindrical

or filamentous in shape (Fig. 7a–d). Plasmodiophora

brassicae-infected cells were significantly larger than

uninfected cells, in accordance with the earlier findings of

Williams and others (1969) and Gustafsson and others

(1986) who used infected cells and intact gall tissues.

Abnormally shaped cells (Fig. 7d) were sometimes

observed among the infected cells, but not among unin-

fected cells. These observations led to speculation that

P. brassicae-infected cells are induced to produce auxin

following invasion by this pathogen (Ludwig-Miller 1999)

(see Ludwig-Müller and others, this issue). Stimulated

auxin production was thought to be a cause of the swelling

of infected cells and result in hypertrophy of infected tis-

sues. The fact that uninfected cells were not significantly

hypertrophied suggests that the cell-stimulating activity of

auxin was localized within infected cells. Because sec-

ondary plasmodia of P. brassicae may be able to synthesize

cytokinins (Müller and Hilgenberg 1986), P. brassicae may

promote cell division in gall tissue, leading to hyperplasia

(Gustafsson and others 1986; Kobelt and others 2000).

Although the concentrations of kinetin added to the med-

ium were low or even nil, both infected and uninfected

cells propagated vigorously under these experimental

conditions. These results suggest that swelling of

P. brassicae-infected cells and abnormal cell division of

P. brassicae-infected and adjacent cells induce the hyper-

trophy and hyperplasia required to form gall tissue.

Plasmodiophora brassicae grew into secondary plas-

modia in suspension-culture cells (Asano and Kageyama

2006). The characteristics of secondary plasmodia in the

cells were identical with those in naturally infected galls.

All the growth stages of secondary plasmodia were

Fig. 7 Plasmodiophora
brassicae-infected or -

noninfected turnip suspension

cell morphology. a P.
brassicae-noninfected

suspension cells. b Cylindrical

cells containing secondary

plasmodia (arrows). c
Filamentous cells containing

secondary plasmodia (arrows).

d An abnormally growing cell

containing secondary plasmodia

(arrow). Scale bars = 20 lm
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observed (Fig. 8a–f). Spherical or subspherical young

plasmodia (Fig. 8a) divided into numerous small, spherical

plasmodia (Fig. 8b). The small plasmodia developed

(Fig. 8c), and then formed a cluster by repeated division

(Fig. 8d). Plasmodia fused with each other (Fig. 8e), fol-

lowed by development of vegetative plasmodia (Fig. 8f).

These observations are in agreement with the scanning

electron microscopy (SEM) observations of Ikegami and

others (1978).

Observation made of a single suspension cell over time

using light microscopy with Nomarski optics revealed that

secondary plasmodia moved in transformed suspension

cells (Fig. 9a–d). Spherical plasmodia and starch grains

separated from a cluster of plasmodia (Fig. 9a) and in

20 min they had moved to the opposite sides of host cells

by means of cytoplasmic streaming (Fig. 9b–d). Light

microscopy revealed that spreading mechanisms of sec-

ondary plasmodia within host cells were accompanied by

division of the latter (Fig. 10). This observation resembles

that reported by Buczacki (1983). His observations sug-

gested that vegetative plasmodia were clustered at the time

when infected cells divided and gave rise to two daughter

cells. The probability of two daughter cells forming with

plasmodia was low. If plasmodia were actively moved

during host cell division into infected cells (Fig. 9a–d),

then the probability of two daughter cells containing

plasmodia would be much higher. This suggests that the

movement of plasmodia by cytoplasmic streaming may

increase the number of P. brassicae-infected cells during

cell division.

Fig. 8 Growth stages of

Plasmodiophora brassicae in

transformed turnip suspension

cells. a Very small

(arrowheads) and small

secondary plasmodia (arrows).

b Proliferation of small

secondary plasmodia. c Small

cluster of secondary plasmodia

(arrow). d Large cluster of

secondary plasmodia with

numerous subunits (arrow). e
Vegetative plasmodium with

several spherical bodies

(arrow). f Vegetative

plasmodium (arrow). Scale

bars = 20 lm

Fig. 9 Time-lapse microscopy

of plasmodium movement by

transformed turnip suspension

cell cytoplasmic streaming

using Nomarski optics.

Secondary plasmodium moved

across the cell in 20 min

(arrows). Scale bars = 20 lm
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Mithen and Magrath (1992) and Kobelt and others

(2000) showed cell-to-cell movement of myxamoebae via

cell wall breakage by pseudopodia-like structures in the

outer cortex of host roots. On the other hand, distribution of

secondary plasmodia in the inner cortex and medullar rays

increased following host-cell division (Dekhuijzen 1976).

Asano and Kageyama (2006) made continuous nonde-

structive observations of intracellular plasmodial move-

ment and division. Their observations led to the proposition

that there are several stages in the growth of P. brassicae

during the cortical infection phase. Secondary zoospores

infect cortical cells, become myxamoebae, and then invade

internal root tissues. Myxamoebae penetrate and migrate

from the epidermis to the vascular stele, then become

secondary plasmodia and grow in the cortical cells. The

secondary plasmodia in the inner cortical cells are dis-

tributed by cytoplasmic streaming and host-cell division

rather than by disruption of the intact cell wall.

The similarity of growth characteristics in in vitro cul-

ture to those in intact P. brassicae-infected plants strongly

suggests that the use of hairy root culture and suspension

culture is a realistic method for growth studies of

P. brassicae and brassicaceous plants.
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